The inverse Galois problem for symplectic groups

Samuele Anni

IWR - Universität Heidelberg

Arithmetic of Hyperelliptic Curves ICTP, $5^{\rm th}$ September 2017

Abelian varieties and the inverse Galois problem

2 Subgroups of $\mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$

- **3** Type $t \{q_1, ..., q_k\}$
- **OVERVIEW OF THE PROOF**

The inverse Galois problem

Let G be a finite group. Does there exist a Galois extension K/\mathbb{Q} such that $Gal(K/\mathbb{Q}) \cong G$?

AIM OF THIS TALK

Show that it is possible to **explicitly** realise for all^{*} $g \in \mathbb{Z}_{\geq 1}$, the group $GSp_{2g}(\mathbb{F}_{\ell})$, simultaneously for all odd primes ℓ , using the ℓ -torsion of the Jacobian of the same hyperelliptic curve.

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and let $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Let A be a principally polarized abelian variety over $\mathbb Q$ of dimension g.

Let ℓ be a prime and $A[\ell]$ the ℓ -torsion subgroup:

$$A[\ell] := \{ P \in A(\overline{\mathbb{Q}}) \mid [\ell]P = 0 \} \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}.$$

 $A[\ell]$ is a 2*g*-dimensional \mathbb{F}_{ℓ} -vector space, as well as a $G_{\mathbb{O}}$ -module.

The polarization induces a symplectic pairing, the mod ℓ Weil pairing on $A[\ell]$, which is a bilinear, alternating, non-degenerate pairing:

 $\langle , \rangle : A[\ell] \times A[\ell] \to \mu_{\ell}$

that is Galois invariant: $\forall \sigma \in G_{\mathbb{Q}}, \forall v, w \in A[\ell]$

$$\langle \sigma \mathbf{v}, \sigma \mathbf{w} \rangle = \chi(\sigma) \langle \mathbf{v}, \mathbf{w} \rangle,$$

where $\chi : G_{\mathbb{Q}} \to \mathbb{F}_{\ell}^{\times}$ is the mod ℓ cyclotomic character.

 $(A[\ell], \langle , \rangle)$ is a symplectic \mathbb{F}_{ℓ} -vector space of dimension 2g. This gives a representation

$$\overline{\rho}_{A,\ell}: G_{\mathbb{Q}} \to \mathsf{GSp}(A[\ell], \langle , \rangle) \cong \mathsf{GSp}_{2g}(\mathbb{F}_{\ell}).$$

- Abelian varieties

THEOREM (SERRE)

Let A/\mathbb{Q} be a principally polarized abelian variety of dimension g. Assume that g = 2, 6 or g is odd and, furthermore, assume that $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$. Then there exists a bound B_A such that for all primes $\ell > B_A$ the representation $\overline{\rho}_{A,\ell}$ is surjective.

OPEN QUESTION

Is it possible to have a **uniform bound** B_g depending only on g?

Genus 1

The Galois representation attached to the ℓ -torsion of the elliptic curve

$$y^2 + y = x^3 - x$$
 (37a1)

is surjective for all prime ℓ . This gives a realization $GL_2(\mathbb{F}_\ell)$ as Galois group for all prime ℓ .

GENUS 2 (DIEULEFAIT)

Let C be the genus 2 hyperelliptic curve given by

$$y^2 = x^5 - x + 1$$
 (45904.*d*.734464.1)

and let J denotes its Jacobian. This gives a realization $GSp_4(\mathbb{F}_\ell)$ as Galois group for all odd prime ℓ .

GENUS 3 (A., LEMOS AND SIKSEK)

Let C/\mathbb{Q} be the following genus 3 hyperelliptic curve,

$$C : y^2 + (x^4 + x^3 + x + 1)y = x^6 + x^5.$$

and write J for its Jacobian. Then

$$\overline{\rho}_{J,\ell}(G_{\mathbb{Q}}) = \mathsf{GSp}_6(\mathbb{F}_\ell)$$

for all odd prime ℓ . Moreover, $\overline{\rho}_{J,2}(G_{\mathbb{Q}}) \cong S_5 \times C_2 \subseteq S_8$.

HIGHER GENERA

What about $g \ge 4$?

<u>Notation</u>: let $C/\mathbb{Q} : y^2 = f(x)$ be an hyperelliptic curve with $f(x) \in \mathbb{Z}[x]$ monic, squarefree and of degree 2g + 2. Let J = Jac(C).

MAIN RESULT

THEOREM (A., DOKCHITSER V.)

Let g be a positive integer such that 2g + 2 satifies hypothesis $(2G + \epsilon)$. Then there exist an explicit $N \in \mathbb{Z}$ and an explicit $f_0(x) \in \mathbb{Z}[x]$ monic of degree 2g + 2 such that if

•
$$f(x) \equiv f_0(x) \mod N$$
, and

2 $f(x) \mod p$ has no roots of multiplicity ≥ 2 for all primes $p \nmid N$,

then Gal($\mathbb{Q}(J[\ell])/\mathbb{Q}$) $\cong \begin{cases} \operatorname{GSp}_{2g}(\mathbb{F}_{\ell}) \text{ for all primes } \ell \neq 2 \\ S_{2g+2} \text{ for } \ell = 2. \end{cases}$

The inverse Galois problem for symplectic groups

ABELIAN VARIETIES

DOUBLE GOLDBACH CONJECTURE

Let $g \in \mathbb{Z}_{\geq 0}$.

Hypothesis $(2G + \epsilon)$: Double Goldbach conjecture

There exist primes q_1, q_2, q_3, q_4, q_5 such that: $2g + 2 = q_1 + q_2 = q_4 + q_5, \qquad 2g + 2 > q_3 > q_5 > q_2 \ge q_1 > q_4.$

Hypothesis $(2G + \epsilon)$ has been verified for g up to 10^7 : the only exceptions are 0, 1, 2, 3, 4, 5, 7 and 13.

Remarks

If (2G + ε) does not hold, it is still possible to obtain the same conclusion as in the theorem except for a finite list of primes *l*:

primes excluded
3,5
3, 5, 7
5,7
5, 7, 11
5, 11, 13
11, 17, 23

Recent preprint of Landesman, Swaminathan, Tao, Xu for g = 2, 3.

- Generalization to higher degree number fields (work in progress).
- It is possible to prove that for each g which satisfies (2G + ε) there exists a positive density of f(x) ∈ Z [x] as in the previous theorem.

EXAMPLE: g = 6

$$\begin{split} f_0(x) &= x^{14} + & 1122976550518058592759939074 & x^{13} + & 10247323490706358348644352 & x^{12} + \\ &+ & 1120184609916242124087443456 & x^{11} + & 186398290364786000921886720 & x^{10} + \\ &+ & 1685990245699349559300014080 & x^9 + & 387529952672653585935499264 & x^8 + \\ &+ & 1422826957983635547417870336 & x^7 + & 585983998625429997308035072 & x^6 + \\ &+ & 607434202225985243206107136 & x^5 + & 1820210247550502007557029888 & x^4 + \\ &+ & 533014336994715937945092096 & x^3 + & 595803405154942945879752704 & x^2 + \\ &+ & 1276845913825955586899050496 & x + & 1323672381818030813822668800. \\ N &= p_t^2 \cdot p_t'^2 \cdot p_{lin} \cdot p_{irr} \cdot p_2^2 \cdot p_2'^2 \cdot p_3^3 \cdot p_3'^3 \cdot 2^{2g+2} \cdot \int_{3 \le p \le g} p^2 = \\ & r^2 \cdot t^2 \cdot p_{2} \cdot p_{2} \cdot p_{2} \cdot p_{2}'^2 \cdot p_{3}^3 \cdot p_{3}'^3 \cdot 2^{2g+2} \cdot p_{3}'^2 \cdot p_{3}$$

 $= 7^2 \cdot 11^2 \cdot 23 \cdot 29 \cdot 19^2 \cdot 41^2 \cdot 37^3 \cdot 17^3 \cdot 2^{14} \cdot 3^2 \cdot 5^2 = 2201590757511816436065484800$

For all $f(x) \in \mathbb{Z}[x]$ such that

• $f(x) \equiv f_0(x) \mod N$, and

2 C is semistable at all primes $p \nmid N$ (e.g. $f = f_0$).

$$\mathsf{Gal}(\mathbb{Q}(J[\ell])/\mathbb{Q}) \cong \begin{cases} \mathsf{GSp}_{12}(\mathbb{F}_{\ell}) & \text{for all primes } \ell \neq 2\\ S_{14} & \text{for } \ell = 2. \end{cases}$$

Subgroups of GSp_{2g}(Fℓ)

Abelian varieties and the inverse Galois problem

2 SUBGROUPS OF $\mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$

(3) TYPE
$$t - \{q_1, ..., q_k\}$$

OVERVIEW OF THE PROOF

Subgroups of GSp_{2g}(Fℓ)

TRANSVECTION

DEFINITION

Let (V, \langle , \rangle) be a finite-dimensional symplectic vector space over \mathbb{F}_{ℓ} . A **transvection** is an element $T \in GSp(V, \langle , \rangle)$ which fixes a hyperplane $H \subset V$.

When does $\overline{\rho}_{J,\ell}(G_{\mathbb{Q}})$ contain a transvection?

Let $p \neq \ell$ be an odd prime such that

- p does not divide the leading coefficient of f
- f modulo p has one root in $\overline{\mathbb{F}}_p$ having multiplicity precisely 2, with all other roots simple

then $\overline{\rho}_{J,\ell}(G_{\mathbb{Q}})$ contains a transvection (Grothendieck, Hall).

SUBGROUPS OF GSp2g(F)

CLASSIFICATION OF SUBGROUPS OF $\mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$ with a transvection

THEOREM (ARIAS-DE-REYNA, DIEULEFAIT AND WIESE; HALL)

Let $\ell \geq 5$ be a prime and let V a symplectic \mathbb{F}_{ℓ} -vector space of dimension 2g. Let G be a subgroup of GSp(V) such that:

- (*i*) G contains a transvection;
- (*ii*) V is an \mathbb{F}_{ℓ} irreducible G-module;
- (*iii*) V is a primitive G-module.

Then G contains Sp(V). The same holds true for $\ell = 3$, provided that $V \otimes \overline{\mathbb{F}}_3$ is an irreducible and primitive G-module.

$\Box_{\text{TYPE}} t - \{q_1, \ldots, q_k\}$

2 SUBGROUPS OF
$$\mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$$

3 TYPE
$$t - \{q_1, ..., q_k\}$$

```
OVERVIEW OF THE PROOF
```

$\sqsubseteq_{\text{TYPE } t} - \{q_1, \ldots, q_k\}$

DEFINITION

Let $t \in \mathbb{Z}_{>0}$. We say that

$$f(x) = \sum_{i=0}^{m} a_i x^i \in \mathbb{Z}_p[x]$$

is a t-Eisenstein polynomial of degree $m \in \mathbb{Z}_{>0}$ if

- f(x) is monic,
- $\operatorname{ord}_p(a_i) \geq t$ for all $i \neq m$,
- $\operatorname{ord}_p(a_0) = t$.

$\Box_{\text{TYPE } t} - \{q_1, \ldots, q_k\}$

DEFINITION

Let q be prime number and let $t \in \mathbb{Z}_{>0}$. Let $f(x) \in \mathbb{Z}_p[x]$ be a monic squarefree polynomial. Then f(x) is of type $t - \{q\}$ if

$$f(x) = h(x) g(x - \alpha)$$
 over $\mathbb{Z}_p[x]$, where

- $g(x) \in \mathbb{Z}_p[x]$ is a t-Eisenstein polynomial of degree q,
- the reduction of h, denoted by $\overline{h}(x)$, is separable and $\overline{h(\alpha)} \neq 0$.

$\Box_{\text{TYPE } t} - \{q_1, \ldots, q_k\}$

DEFINITION

Let q_1, q_2 be prime numbers and let $t \in \mathbb{Z}_{>0}$. Let $f(x) \in \mathbb{Z}_p[x]$ be a monic squarefree polynomial. Then f(x) is of type $t - \{q_1, q_2\}$ if

 $f(x) = h(x) g_1(x - \alpha_1) g_2(x - \alpha_2)$ over $\mathbb{Z}_p[x]$, where

- for some $\alpha_1, \alpha_2 \in \mathbb{Z}_p$ with $\overline{\alpha}_1 \neq \overline{\alpha}_2$ (reduction)
- $g_1(x) \in \mathbb{Z}_p[x]$ is a t-Eisenstein polynomial of degree q_1 ,
- $g_2(x) \in \mathbb{Z}_p[x]$ is a t-Eisenstein polynomial of degree q_2 ,
- $\overline{h}(x)$ is separable and such that $\overline{h(\alpha_i)} \neq 0$ for i = 1, 2.

$\square_{\text{TYPE } t} - \{q_1, \ldots, q_k\}$

DEFINITION

Let $f(x) \in \mathbb{Z}[x]$ be a monic squarefree polynomial. We say that f is of **type** $t - \{q_1, ..., q_k\}$ at a prime p if $f(x) \in \mathbb{Z}_p[x]$ is of type $t - \{q_1, ..., q_k\}$.

The notion of type can be expressed in terms of congruence conditions.

 $\square_{\text{TYPE } t} - \{q_1, \ldots, q_k\}$

BACK TO THE EXAMPLE

$$\begin{split} f_0(x) &= x^{14} + & 1122976550518058592759939074 & x^{13} + & 10247323490706358348644352 & x^{12} + \\ &+ & 1120184609916242124087443456 & x^{11} + & 186398290364786000921886720 & x^{10} + \\ &+ & 1685990245699349559300014080 & x^9 + & 38752995267265385935499264 & x^8 + \\ &+ & 1422826957983635547417870336 & x^7 + & 5898398625429997308035072 & x^6 + \\ &+ & 607434202225985243206107136 & x^5 + & 1820210247550502007557029888 & x^4 + \\ &+ & 533014336994715937945092096 & x^3 + & 595803405154942945879752704 & x^2 + \\ &+ & 127684591382595586899050496 & x + & 1323672381818030813822668800. \end{split}$$

<u>Transvection</u>: if f(x) has type $1 - \{2\}$ at some prime $p \neq \ell$ then the local Galois group at p contains a transvection in its action on $J[\ell]$.

- Abelian varieties and the inverse Galois problem
- 2 SUBGROUPS OF $\mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$
- (3) TYPE $t \{q_1, ..., q_k\}$
- **4** Overview of the proof

OVERVIEW OF THE PROOF

MAIN IDEA: STUDY INERTIA

Study the Galois representations $H^1_{\acute{e}t}(C, \mathbb{Q}_{\ell})$ and $J[\ell]$ as representations of local Galois groups.

 $\ell \neq p$: we use the method of clusters, recently introduced by Dokchitser T., Dokchitser V., Maistret and Morgan.

 $\ell = p$: theory of fundamental characters.

If f(x) is of type $t - \{q_1, ..., q_k\}$ at a prime p then we have control over the image of the inertia subgroup at p.

THEOREM (ARIAS-DE-REYNA, DIEULEFAIT AND WIESE; HALL)

Let $\ell \geq 5$ be a prime and let V a symplectic \mathbb{F}_{ℓ} -vector space of dimension 2g. Let G be a subgroup of GSp(V) such that:

 \Leftarrow type $1 - \{2\}$

(ii) V is an \mathbb{F}_{ℓ} irreducible G-module; \leftarrow types and $(2G + \epsilon)$

(iii) V is a **primitive** G-module. \Leftarrow quasi-unramified, p-admissibility Then G contains Sp(V). The same holds true for $\ell = 3$, provided that $V \otimes \overline{\mathbb{F}}_3$ is an irreducible and primitive G-module. └─ OVERVIEW OF THE PROOF

IRREDUCIBILITY

We cannot always guarantee that $H^1_{\acute{e}t}(C, \mathbb{Q}_{\ell})$ and $J[\ell]$ are locally irreducible. Use the notion of type:

Lemma

Let p_2 be an odd prime. Suppose that $f \in \mathbb{Z}_{p_2}[x]$ has type $1 - \{q_1, q_2\}$ where q_1, q_2 are odd primes, coprime to p_2 , and such that $2g + 2 = q_1 + q_2$. Suppose that p_2 is a primitive root modulo q_1 and modulo q_2 . Then for every prime $\ell \neq p_2, q_1, q_2$ we have

$$(J[\ell] \otimes_{\mathbb{F}_{\ell}} \overline{\mathbb{F}}_{\ell})_{ss} = M_1 \oplus M_2$$

where M_i are $(q_i - 1)$ -dimensional irreducible $G_{\mathbb{Q}}$ -subrepresentations.

We prove irreducibility, away from a finite list of primes, requiring that f(x) has type $2 - \{q_3\}$ at an odd prime p_3 , that is a primitive root modulo q_3 . In order to conclude for all primes we require "double Goldbach".

THE INVERSE GALOIS PROBLEM FOR SYMPLECTIC GROUPS

Samuele Anni

IWR - Universität Heidelberg

Arithmetic of Hyperelliptic Curves ICTP, $5^{\rm th}$ September 2017

Thanks!